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This paper deals with the problem of the stabilization of a mechanical system, 
in the neighborhood of its position of stability, by using some additional 
forces El to 31. It considers the problem of stabilization and control by 
signals depend- upon the velocity. It relates the problem of the stabbili- 
zation by dissipative forces [? 

1 
to the problem of the anafytiaal designing 

of an optimum control system 14 and with the characteristics of contxolla- 
blllty and predictability of the system [5 and 61 from its specific coordi- 
nate [33. The effect of the dissipative and gyroscoplc foroes on the Con- 
trollability, predictability and ability to be stabilized is studied. For- 
mulation of the ~m~m~-min~rn~~ rule E6 to 81 which determines in the case 
of the linear approximation the opt%mum command u from the smallest inten- 
s1ty p#Eu]. 

1. We shall consider a holonomic mechanical system described by Equation 

where pi axe the curvilZnear coordinates, T is the kinetic enegy, Qi are 

the generalised forces and u is the control sSgna1. The quantity u in 

Equations (1.1) is considered to be a scalar. 

Let system (1.1) have a solution gt= 0 fox u 5 0. i?e shall assume that 

the linear approximation of (1.1) is stationary and has the form 

i UijCjj" = i bijq, + biu (i = i,..., n) (4.2) 

j=l j=l 

Here, oIJ, 3iil and bi are constants, I&pression Ci-~,~p,p, is positive 

definite and b,,= B,, e In agreement with the general terminology, we shall 

eay that such a system is conservative. 

Without loss of generality, we shall assume that the kinetic energy in 

the first approximation 

appears as the sum of the squares of the velocities 
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and that only one of the numbers b, in Equations (1.2) is different from 

zero, let b,= 1. This is always possible by a linear transformation of the 

variables 4, and u . In accordance with this, we shall say that the sys- 

tem is subject to the control of the first coordinate. 

We shall designate by lower case latin letters column vectors. The sym- 

bol * will designate transformation. 

We shall consider the problem of the analytical designing of the control 

system [4]. 

P r o b 1 e m 1.1 . Find a function 

u =_ l*y' =- l,ql’ + l,q,’ + . . . + l,q,’ (1.3) 

depending only upon the velocities, and such that the solution' ql= 0 is 

asymptotically stable [$I], on the basis of equations (1.2) and (1.3), end 

such that the minimum of the functional 
02 w 

8 

2n 

J = 
i 
0 (2, U) dt = 

\(r, 
CijZiZj + G? U2 dt =I min 

) (1.4) 
0 0" ij=l 

Is obtained for variations of p,(t), u(t). 

Here d> 0, ~C$$zj is a positive semi-definite form Zai-I = q3', and 

'2i = qi* We shall transform the system (1.2) Into normal coordinates [I] 

?jF = XgZj, + f&U (i = I,..., TZ) 

Here X, and e, are determined from Equations 

1 B - hE 1 = 0, ei = Q 

i (bjk - 6j,l&)Sk~ = 0 (i, j = 1 ,...) n, 6, = 0, 
k=l 

(1.5) 

6,, = 0, i ;f- j) 

whereupon the vectors $ = {ski} (k = 1, . . ., n) are the orthogonal elgen- 

vectors of the,matrlx F = (I&,II . 

We replace Equations (1.5) by the system 

Z'ai-I = h,G,s,i + Sl, 261% Z'2i = r,i_1 (i = I,..., n) (1.6) 

In coordinates xi the functional (1.4) becomes 

J = 7 ( 5 dijxixi + dz2) dt 
l 

0 ij=l 

The desired stabilizing signal 

(1.7) 

U = plx, .4- p3x3 + . * * + Pm-l%&1 

Llapunov function 
211 

(1.8) 

(1.9) 

and the optimum 

L- = 2 AijXiXj 
ij=l 



which determines that signal, satisfy the equations of Liapunov-I?ellman [4 

and 101 

5 digixj $ dU2 + fi (&~-IX~JC + ‘IBk-I”) & f ;I -$J- 
i jxl k-l 

Tak-1= o tl,loj 

2du -k -&,,_, -$!- = 0 
k-l zk-1 

Substituting (1.8) and (1.9) Into (1.10) and equating to zero the coeffl- 

cJents of Identical xix, , we get for the values of par_, and A,, the 

equations 
n 

IL4 2k, si-IsI, zi-1 = 0 (k = i,..., n) (1.11) 
i=l 

2 4c-1, ai- ~1, ti-I + @se1 = 0 

i=l 
n 

&FL 2P-1+ dP.yi-1 Pap_1 + P&l YJ 
i=l 

n 

(k = I,..., n) 

Asi-1, ap-1*91, at-1 + 

(1.12) 

+ Pap-1 2 A - ai I, s-1 ~1. ai- + Ati-I, ap + &r-l, ak = 0 (k, p= I,..., n) (1.13) 
i=l 

&,w+ &xwAak-~m-~ + Awm = 0 (k, p = I,..., n) (1.14) 

dap,ak i- ha,-1 Ask, BP-I + &-I A,, ~-1 = 0 (k, p = i,,.., n) (1 .i5) 

We shall consider a class of such problems for which the optimum function 

V (1.9) can be constructed a8 the sum of two components, one of whichdepends 

only on the coordinates and the other on the velocities only. Then A,+_,= 0. 

We get the equation V(X”) - J’(x’) , where I’ 1s the minimal value 
of the functional 1.7) coneldered as a function of the initial condltlons 
of the system x(0 I - x0. Consequently, we shall consider the class of prob- 
lems 1.1, for which the mlnlmum value of the functional JO in the function 
of the initial state of the sy8tem, can be broken down Into two components, 
one of which depends only on the initial coorddnates 4io= *y) and the other 
one, only on the Initial velocltlea qgio = q’ JO) 

We shall assume that in the linear approximation [5andll] the system (1.1) 

can be completely controlled by the signal u, and consequently, the fbllowlng 

conditions are fulfilled: 

&i-l # %j-1, $1, zi-1 # 0 (i, j = i v..., n; ifi) (1.16) 

With the assumptions made, there follow6 from Equations (1.11) to (1.15) 

that the following relations muat be fulfilled: 

an n 

2 dijyirj + du2 z 2d (x 
ij=l k--l 

A ?k,Si = - &k-l &k-l, e-11 Azk-1, ?Jf-1 = Ifi 

) 
2 

J)g+l *zk-1 9 P*-l= T 

e-1 v%k-*, 
sl,ak-l 

v %k-1,2k-1 
d (1.47) 

( k, p = i,..., n 

kfp ) 
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A ak, ZP = Ask-l, ap-I = 0 (k, P== C..., n; k#p) (1.18) 

(the sign in front of the radical In (1.18) Is chosen in such a way that 

Am-l, at-l’ 0) ’ 

We shall discuss the sufficient conditions of solvability of the problem 

1.1 with our assumptions. The function V determined by (1.9) must be posi- 

tive definite, i.e. the inequality 

must be satisfied. 

hk-1 < 0 (k = i,..., n)l (1.19) 

This means that the original system (1.2) must be stable in the absence 

of control. The fulfillment of conditions (1.19) is sufficient for the func- 

tions V to be positive definite. 

A positive definite function y , having a negatlve semi-definite deriva- 
tive &‘I& = --co (2, a) will guarantee [ 121 an assimptotic stability of the 
motion Y, = 0 f if, on the surface 

dV 
- - - 2 ( i &#.-1 z,k-l) dt - 

k=l 

there are no complete semi-trajectories of the system (1.6),(1.8), except 
for the equilibrium position zj= 0. A sufflclent condition is obtained if 
the linear forms ,_ 11 

d” 

altk Lz Pzi-1%-l 
> 

(k = 0, 1, . . . ) 272 - 1) 
i=l 

formed on the basis of (1.6),(1.8),are linearly independent. Sufficient 
conditions for asymptotic stability of the system (1.6),(1.8) can be deduced, 
as was done in [ 2J , However, the conditions of Theorem El23 can also be 
quickly considered from another point of view, by relating this theorem with 
the property of predictability of the system considered. 

On the basis of the system of equations 

dx/dt=Axfbu (EL=p*x,x=(xl,...,x~}) (1.20) 

let some Liapunov function (the quadratic form V(x)) have the negative 
semi-definite derivative 

dy / dt = - p (x) - du2 (1.21) 

where P(X) is a positive semi-definite form of the variable .xi. The ensem- 
ble of points x , for which U(X) = 0 represents a linear subspace of space 
f&3*+ We shall denote this subspace by the symbol N . Together with sys- 
tem (1.X)) let’us consider the homOgenQUS system 

dxldt =Ax 

for which we shall examine the problem of prediction of the value 

?j (T) = 7*2 (T) 

(1.22) 

from the value E (t) = u (t) = P*X @] 
operation [ 13, 6 and 33 

for 0 < t < T, i.e. the problem of the 

T 

rl @“I = 5 5 (4 cp (~1 d* (1.23) 

0 
The following statement is true. 

Lemma 1.1. Let it be possible to choose 8 positive definite func- 

tion V(X) having a negative semi-definite derivative (1.21) according to 

Equation (3.20). If, for the system (1.22), the problem (1.23) of prediction 



Problem of the stablllratlon of a mechanical syetem 983 

of the quantity q(T) = r*X(T) f rom the quantity E(t) = U(t) = p*X(t) Is 

Possible for all vectors r of the subspace y , then the solution x = 0 

1s asymptotlcally stable on the basis of Equation (1.20). 

In fact, we shall consider a solution x(t) dlfferent from x(t) 3 o and 
such that dV/dt 3 0. According to (1.21), thls'ls possible only If condl- 
tions a [z(1)] s 0 and p [z(1)] z 0, are fulfilled, I.e. In any case, only if 
th solutlon x(t) lies In the subspace N for all t >C. As long as 
x t) SO, we have, at some moment, e 
r*r(T) = 9> 0 . 

t = T , s(T) = 7. f 0 and r EN. Thus 
From the condition of the Lemma, the value n(T) Is pre- 

dictable from the value u(L) (0 < t<Ii"). According to C6], this predlctabl- 
llty Is possible only If u (t)gO. when n(T) # 0 . The contradiction we 
have obtained (a(t)- 0 and u 1)f 0) shows that there are no solution x(t), 

(, different from z(l)= 0, for w lch we could get dV / dt =_ 0. According to 
[12], the solution x = 0 of the system (1.20) Is asymptotically stable, 
which proves the Lemma. 

Note 1.1. Thevalue 
',,;,p>.(;!:f the 

q = r*x(T) is predictable from +.he value 
ve$;or F* lies In the subspace It' generated by the vec- 

stabllliy oi'l%e 
p'rl - Consequently a sufficient condition of asymptotic 
system (1.20) which has a 

having a negative semi-definite derivative P 
osltlve definite function V(x) 
1.21), Is obtained If the linear 

subspace J , where P(X) = 0 Is contained In the subspace K . 

The asymptotic stability will be guaranteed If the system (1.6) foru E (1 

Is completely predictable from the quantity ~p~-l, Xak_l. A sufficient con- 

dition Is obtained If conditions (1.16) and (1.14) are satisfied and 

P&1 -# 0 (k = I,..., n) (1.24) 

Thus, the following statement Is true. 

Theorem 1.1.1. Let conditions (1.16) and (1.19) be satisfied and 

let the expression U,,r,x, In the mlnlmlzed functional (1.7) have the form 

i dijXiXj == (i r,,_, Xzk-1)' z (1*X)" 
ij=1 k=l 

(1.25) 

whereupon all ~at_l# 0 . Then problem 1.1 has the solution u = p*.x (1.81, 
which stabilizes the system (1.6) In an optimum manner. Thus 1)2k _, = d-'.'&-, 
and, after the substitution u(t) = p*x(t), the sublntegral function UJ in 

the mlhlmlzed functional becomes w = 2a(p*.~)~ . 

Theorem 1.1.2. Taking Into consdderatlon only the problems where 

the mlnlmal value of the functional Jo= mln J , (considered as a function 

of the Initial condition of the system 4 ,,,, q’,o), appears as the sum of two 

components, one of which depends on coordinates q10 only, and the other on 

the velocities q’,,, only, the problem of the stabilization can be solved 

onlgr if conditions (1.16), (1.19) and (1.25) are fulfilled. Therefore these 

conditions are also necessary conditions of solvability of the problem. 

2. We shall consider the relation between the results we have just 

obtained and the problem of stablllsatlon of a system with dissipative for- 

ces [2]. 

Thus, let us assume the system (1.5) Is stable for u ~0 , l.er X, < 0 
(t = 1 ,...,n). Then, according to [3], the equilibrium posltlon 0 can 
be made asymptotically stable by means of the choice of a force u v,y') of Y'= 
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an arbitrary kind, If, and only If the conditions of controllability (1.16) 
are fulfilled. The force u(v,k') can be determined with these conditions 
from the solution of the problem of the analytical designing of an optimum 
control system [4] by mlnlmlzlng the value (1.4). We shall choose the value 
J , In accordance.wlth the results of Section 1, In the form 

(2.1) 

The optimum Llapunov function V(X) and the optimum command u'(x), zatls- 
fylng the equation of Llapunov-Bellman 

niin,, (2.2) 

as follows from Section 1, have the form 

v (3.) = i lT:i_l- &i_l”2ia)v IL3 (z) = - i; 
sl,2i-l”2i-1 

i ~1 i=l 

whereupon, on the baBi8 of Equation (1.6), we have for u = a0 

dV 

--2(i 
2 

-z-= %ai-122i-1 
i-1 

(2.3) 

(2.4) 

When conditions (1.16) and (1.19) are fulfilled, the system (1.6) (2.4) 
satisfies the conditions of Lemma 1.1, I.e. In fact, the Liapunov function 
V(X) (2.3),(2.4) guarantees an asymptotic stability of equlllbrlum xi- 0. 
However the values Sl,zi-1 n" In Equations (1.5) can be considered as general- 
lzed dlzzlpatlve forces I,, g enerated by the function of Raylelgh [14]. 

29;; 
1 

z 
sl,ai-lZzi-l (2.5) 

i=l 

In such a case, the optimum Llapunov function V(x) Is equal to twice the 
energy of the system n n 

Ii = ; (3 z$_, - x h,i_1z2i*) 
1=1 i=l 

In coordinates ql, q,‘, described by Equatlonz (1.2), we have 

2R = (q1')2, Q1 L a0 Z - ql' 

Conzequently, If we assume that the system (1.1) Is controlled In the 
linear approximation by a signal on the coordinate Q,, we shall deduce that 
when conditions (1.16) and (1.19) are fulfilled, the ztablllzatlon of the 
system (1.2) lz possible b a dlzzlpatlve force u"= - aA/bql, generated by 
a partial dlzzlpatlon R(g 3 on the coordinate 
trollability (1.16) mean, ln particular, that t e generalized force p does R' * 

(The conditions cf con- 

not coincide In direction with any canonical axis x,). 

Thus, the following statement Is true. 

Theorem 2.1. The stable system (1.2), subject to the command u 

on Its first coordinate p, can be stabilized to asymptotic stability by a 

force of an arbitrary kind u (q,a') If, and only If the ztablllzatlon of 

the system Is possible by a dlzzlpatlve force 11 (Q1'J 2 - i3R / dg,'. There- 
fore, the conditions of ztablllzatlon by a dissipative force [2] coincide 

with the general conditions of full controllability and ability to be stabl- 

lized of the system [3]. Thus, a dIzzlpatlve force u(q,') can be considered 

as the solution of the problem of the analytical designing of an optimum 
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control system u , which mlnlmlzes the quantity 

J = i [q1’2 + 22 @)I dt = i [2R (Ql’) + u2 @)I dt (2.6) 

0 0 

The minimum value J' of quantity J of (2.6) Is therefore equal to twice 

the quantity of energy dissipated during the decaying motion of the optimum 

system 

J” = 5 4R Iq,’ (t)l dt 
0 

The problem 1.1, as studied in the case of the first approximation (1.2) 
can be extended, on the basis of the general results [15 to 17],to the ana- 
logous problem of the completely nonlinear system (where nonlinear elements 
include the small terms of highest order with respect to t ). We shall not 
consider here the details of this extension. 

We shall notice only that a conservative stationary system has an integral 
of energy, but for the motion of the controlled system 

d aT cVT a11 d ‘8’ aT XI 
-Y--=- 
dt aql %l c3q1+ uy -7----- dt aqi aqi - aq, (i = 2, . . .( n) (2.7) 

the derivative of the complete energy of system /J , with Inclusion of its 
nonlinear elements, satisfies condition 

dHi dt = ql’ u or dH/dt= -2R for U = - f3R I aqi’, 2R = ql’a 

Therefore, the statement of Theorem (2.1) is still valid In the nonlinear 
case. 

Consequently, the solution of the problem of analytical designing of an 
optimum control system o3 

s 12R (ql’) + u2 (t)l dt = min (2R = ql”) 
0 

Is also determined In the nonlinear case by the optimum Llapunov function 

TV (qs q’) = 215 (9, q’) 

equal to twice the complete energy, whereupon u" = - @ Ii%'. 

3. We shall consider the Influence of dissipative forces on the control- 

lability and predictability of conservative mechanical systems In the nelgh- 

borhood of the equilibrium position. We shall assume that system (1.6) Is 

not controllable completely by the control u . This means that the condl- 

tlons (1.16) are not fulfilled, I.e. some of the X, are equal, or some of 

the numbers 8,‘ are equal to zero. 

We shall consider the particular case ln which A,= . . . - I.= A $ 0 . 
Therefore we shall consider the system 

Z'zi-1 = Ax,{ + aiu, 5'*( = X2{_1 . (i = i,..., n) (3.1) 

where at least one of the numbers a,# 0 . We shall examine the existence 

of such dlsslpatlve forces when the system (3.1) becomes completely control 

lable by the control u .' In order to find a solution to this problem, It 

1s sufficient to show that we can find a positive semi-definite function 
n 

(3.2) 



such t;hat the system 

&i-1 = hxz; -?p- +a$&, 
!&I 

d$i = &&i-z fL' = 1,.*., n) (3.3) 

becomes controllable completely by the control u s In the present case, we 

can determine some dissipative forces making the system (3.1) completely con- 

trollable in the following maAAer. The system (3.1) can always be transformed 
Into the form 

&i-1 = AZ21 + f3@, Gc = M-1 (p*=#d, i = 1,..., n) (3.4) 

Let us choose a function R of the form 

2fi = 5 piz22i_l 

i=1 

The system (3.4) becomes 

z's,-1 = hZ,i - p$zi-1 + BpI &i = %i-1 (i = 1,,,., n) (3.5) 

XLt can be verified that the system (3,5] is conkwllable completely if 

cl%+ PJ ? i.e. it is always possible, fn this case, to find some dlsslpatlve 

forces which make the system completely Controllable. 

4. Example, Let u8 consider a Simple Illustrative example. Let 
a material pofnt move on the Surface 8 = &,gf + The coordinates f.r,g,t) 
are Orthogonal, the r-axis directed vertically upwards and x and g along 
the principal directions Of the surface at the point 0 , which, we asSumS, 
1s the extremum point of the function 8 = ~(x,y) . We shall suppose that 
the deviation of the material point from the position of equilibrium (O,O,O) 
and its velocity are small. We shall assume that the meterlal polnt 1s sub- 
ject to the force of gravity and the control u , Which has a OOAStaAt horl- 
zOAt8I directlOA, !&e equatlOASOf mOtloA of the point are in the first order 
8pproxlmatloA 

2" = hm -I- mu, Y * = a$J + c&a 6-1) 

a) If k#J.2,ar#09 d2=#= 0, th e system (4.1) can Ix completely control- 
led and Stablllzed by the control I( , 
2 f y(x,p) 18 not a spherical point, 

if the point 0 of the surface 
and if the CoAtrol Is not directed along 

the prlnclpal dlrectioAS of the surface at this point; 

b) If Al=& = h# ol i.e. If the point 0 Is a spherical point, the 
system (4.1) la not coA&ollabIe completely, and cannot be stabilized for 
x*0* From Se&ion 3, there follows t;hat, If iR suoh case an irregular 
friction Is applied, the system becomes completely controllable and can be 
stablllzed by the control u If the dfrectloA does not colnclde with the 
prticlpal axe13 of the ellipse of frfction, Here, by *eUipse of friction" 
we mean the curve il - Caz where R(x',g') la the dlsslpatlon function. 

Let us see haw important gyroscoplc forces are in problems of control, 
prsdlotlon and stablllzatlon. It Is known Cl], that a conservative unstable 
System can be stablllzed,in many ca8es (but not asymptotically) by the super- 
position of adequate gyrosooplc forces. This Stablllty 1s destroyed when 
dl#alp&tfve forces are applied El]. It turn8 out that gyroscopic forces play, 
wfth respect to the COAtroIled system, a role which 1s as Important. IA other 
word@, in Mary caSe8, a~ adequate choice of gyroacoplc force6 Will Improve 
the qualltlea of COAtrOlI&blIlty, predictability and ability to be etablllzed, 
of a Coneervatlve mechanical System ln the neighborhood of its poaltion of 
equilibrium. 

5, We shall consider the particular e&Se In which we have in (1.6) X,= 

a . . . = x,= x , and at least one of the numbers alif l The system (1.6) 

CaA then be written 1A the form 

X1' = 3Lxg + u, x2( = Xl, X'2i-1 = hX2(, x12+ = X2i-1 (i = 2,..., n) (5.1) 



The system (5.1) is not completely controllable by the 

ever it is possible to find gyroscoplc forces which would 

controllable completely. 

In fact It can be verified easily that the system 

s; = hx, + WI53 + u, 53 
‘=x 

1 

control u , how- 

make the system 

(5.2) 

X13&1 = XX3t + @i+itl - W-lxSi-Sr x1* = x6&* (i = Z,..., n, c&=0) 

is controllable completely by the control u if 

A# 0, a{ # 0 (i = 1,..., n-i) 

We shall consider an example In which not all X are equal. Let us have 
a pendulum with two degrees of freedom moving in the neighborhood of Its 
upper unstable point of equilibrium, and subject to the horizontal control 
force lying in the horizontal plane (2,~) , 
the equations of the first approximation are 

whereupon we shall suppose that 

** = Xl% Y -==?@+U (5.3) 

where .r and 
Y 

are the coordinates of the mass center m rigidly fixed 
on the shaft wh ch does not rotate around Its longitudinal axis. 

This system Is not completely controlled by the control u along I/ , 
and consequently the position x 
of u (X,X’, V, Y’) . 

= Y = 0 cannot be stabilized by any choice 
Similarly, this system Is not completely predictable 

from the coordinate y. We shall assume, therefore, that the mass m Is 
concentrated In a flywheel rotatlna around the lonnltudlnal axis of the shaft 
with an angular velocity UI The;, complementary-terms determined by the 
gyroscoplc effect appear In iquatlon (5.1). Let, In such case, the equations 
of motion of the first approximation take the form 

21’ = x*, x2’ = x,x, + 0x4, x3‘ = 32, zp’ = x3x3 - 0)23 + u (5.4) 

It is easy to check that for A,# 0 , UJ # 0 , the system (5.4) Is com- 
pletely controllable by the force u , and consequently, the resulting 
mechanical system can now be asymptotical1 
u (x9 Y’, Y, I/‘) . 

stabilized by the force 
Similarly, the system 

instance from the quantity x3(t)) . 
f 5.4) will be predictable (for 

Thus, It can be seen from what has been said previously, that the system 
which could be neither controlled nor stabilized by a given force, could be 
controlled and stabilized by the same force when adequate gyroscoplc forces 
are applied. 

We shall note, furthermore, an lnterestlng characteristic which dlstln- 
gulshes the property that a conservative system lnltlally stable can be sta- 
bilized by a control u , and that a noncontrollable conservative system 
lnltially unstable can be controlled and sttlbllized in presence of gyroscopic 
forces. This property Is closely related to an analogous property which con- 
cerns the case of noncontrollable systems. It Is shown in Sections 1 and 2 
that a conservative system which is-stable (but not asymptotically) can be 
stabilized by a force chosen in a class of forces of an arbitrary kind. If 
and only if, It Is limited to a class of dissipative forces. On-the cbn- 
trary, If, by superposition of gyroscoplc forces, we stabilize (but not 
asymptotically) and make controllable by a control u a system which was 
initially unstable and not completely controllable by u , this means that 
we can stabilize it only by choosing a force u ( ) of a sufficiently 
general kind which cannot be limited to a class e 

,q 
o dissipative forces. Those 

dissipative forces would even destroy the nonanymptotlc stability already 
obtained by means of gyroscoplc forces. 

6. In conclusion, we shall examine, In the case of a conservative mechan- 

ical system (1.2),how the"maximunrmlnlmum" condition is transformed [6 and 73 
which determines the control u , which in turn brings the system to the 
given state 9,~ 0, 9," 0 using the smallest possible intensity p'(u) . 
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We shall consider the problem only In the linear approximation. Further- 
more, In order to simplify the calculations we shall not consider the problem 
of bringing the syst,em from the given point g1 , ,J,~’ to the equilibrium 
position ql= 0 
system from the ;o%-I~' "p'= 

but on the contrary tie problem of bringing the 
0 

that we can get the sol&Ion if'&; problem from the so ut on of the other 
I- 0 to the point qiq, 1,;. It Is obvious 

by changing the time t into - t . 

We shall consider the system described by Equations 

q1" = i bljqj + U, 

rl 

Ql = 2 bijqj (i = 2,..., 78) 
j=l j=l 

(6.1) 

The problem Is the following. 

Problem 6.1. Given the interval of time 0 < t < T the initial 
(a) and final (UJ) states of the system 

qi (0) = qja = 0, q*’ 60 = $;, = 0, qi W = qio, qi’ V’) = & 

find the control u 0) (GdtdT) which brings the system (6.1) from the 

state c to the state U) and has the smallest possible intensity P*(u) . 

The form of the function P*(U), which yields an estimate of the intensity 
of the force u which is used, Is supposed given. It Is also assumed that 
the function c+(u) CorresPonds to the calculation of the norm of the 
operation d 

CP = 1 5 0) u 0) dt 

considered on any functional spacec{E (t), O< t <T}+ on which the norm 
Is. given. Then 

T 

linear 

(6.2) 

P(S) 

P’ fu) = SUP [s i (r) n(z)dz for p @.)=I ] 
n 

We shall assume that the system (6.1) Is completely controllable, and 
consequently that the problem 6.1 can be solved for any end conditions a 
and UJ . 

In agreement with [6 
consider the motion 
(6.1) and hai the 

In order to solve the problem 6.1, we must 
of the system which corresponds to 

min, p (b’y”) = ~1 

for the end condition (q*(T) y (T) .= 1) . The sought optimum command u”(t), 
which solves prcblem 6:1 Is determined from the condition of maximallty of 
operation (6.2) on 5+= b+y", i.e. from condition 

T 

s E” (z) d’ (z) dz = max, [i E" (r) u (r) dr] 
0 0 

(6.4) 

with condition *(n) = l/a. . Condition (6.4) is the condition of the maxi- 
mum principle [l ] .5 and condition (6.3) Is the condition of the minimum [7] 
which, according to the conditions of the maximum principle, yields the vec- 
tor $ = y which 
state g(T) = 9,. 7 

uarantees that the system will come exactly to the given 
Here b Is a 2a column vector b = (0, 1, . . . . O), q 

Is a 2n vector lql, 411, . . . . q., qd3 1 . 
Let us change to normal coordinates 

label them differently than In (1.6). 
in Equations (6.1) We shall 

Ic*this section especially we shall 
consider that the velocity has a greater index than the corresponding coor- 
dinate. 

Consequently, Lhe symbols xzk_, ~111 designate the coordinates and the 
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symbols .rpk the velocities. Then system (6.1) becomes 

x‘*-l -= x.& , %k ’ T hk2*-, -+- P& (k = 1, . . ., n) (6.5) 

The end conditions of the problem become 5 (0) = da)== 0, z (T) -=; ztw), 
where the & dimensional vector z(0) is related to the Z~I dimensional vector 
Q 'w' by a linear transformation. 

The system of equations corresponding to the system (6.5) (for u = 0) 
becomes 

Y',k_l = - &Yzr;, Y,,' = - !12k-1 (k = 1, . . .( n) 

After relabelllng the variables y2k = ?&-I* %+-I’= ‘zk and after reversing 
the direction of measuremeAt of time, I.e. after replacing t = T - r, we get 
from (6.6) Equations 

Z( SC-1 = ‘ak* ‘2k 
‘=A. 

kz‘dk-1 (k = I, . . ., n) (6.;) 

which coincide with the principal part o system (6.5). We shall denote by 
z(o) the vector obtained from vector z(" f for the labelllng of coordinates 

which relates the vectors 
tor 1 = Ip,, 0, . . . . PO., 8 

and z ; we denote by the symbol I the vec- 
] which is deduced from vector p = (0, P,, . . . 

..t 0, Pam) by an analogous relabelllng of coordinates. 

We shall find the motion =(t) of system (6.7) satisfying to end condition 
([.Z'") I’ z (0)) = 1 and such that the signal E (t) = (I’z (t)) 

smallest possible Intensity p(s) = mln . ‘l’hn the soughL -slgnal Y(T) 
0 ,( t<T) has the 

determining the optimum command 
"maxlmum-minimum" rule (6.3) and y 6 

t) 
.4) 

according to the conditions of the' 
1 s related to the vector t(t) by the 

relations I 
Y2k @) = Z2k-l (T - T'), Ye-1 (r) = Z2k (T - 7) 

Thus, we come to the following conclusion. 

T h e o r e m 6.1 . The optimum control u"(t) solving the problem 

(6.1) of the control of mechanical conservative system, is determined by the 

"maximum -minimum" rule conditions (6.3) and (6.4) where the vector I/('0 
describes the motion of the same system (for u E 0) In which the coordinates 

are replaced by the velocities, the velocities by the coordinates and for 

which the time is reversed (7 - T - t) . 
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