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This paper deals with the problem of the stabillzation of & mechanical system,
in the neighborhood of its position of .stabillity, by using some additional
forces [1 to 3]. It considers the problem of stabilization and control by
signals depending upon the velocity. It relates the prodlem of the stablli-
zatlon by dissipative forces {2} to the problem of the analytical designing
of an optimum control system [4] and with the characteristics of controlla-
bility and predictability of the system [5 and 6] from its specific coordi-
nate [3]. The effect of the dissipative and gyroscoplc forces on the con-
trollability, predictability and ablillity to be stabllized 1s studied. For-
mulation of the "maximum-minimum” rule L6 to 8] which determines in the case
of the §§n§ar approximation the optimum command u from the smallest inten-
sity p [ul.

1, We shall consider a holonomlic mechanical system described by Equation

d aT ar .
E{@:*—EQZ:@(EQD’”ﬁ%’W (i=1,...n) (1.1

where g, are the curvilinear cocrdinates, T is the kinetic enegy, §, are
the generallzed forces and u 1s the control signal. The quantity u 1in
Bquations (1.1) 1is considered to be a scalar,

Let systenm {1.1) have & solution ¢,=0 for y = 0. We shall assume that
the linear approximation of {1.1) i1s stationary and has the form

D oagg) = X byg;+ bw (=L (1.2)
i=1 i=t

Here, 4., b,; and p, are constants, Expression ZIg,,g;g; 1S positive
definite and b,,= »,, . In agreement with the general terminology, we shall
say that such a system 1s conservatlve.

Without loss of generality, we shall assume that the kinetlc energy in
e first approxXimation
th r A3j ) o fwg - 1/12 b aijgilg;

appears ag the sum of the squares of the veloclties
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TO =,y (q* + . .. g,

and that only one of the numbers », in Equations (1.2) 1s aifferent from
zero, let p,= 1. This is always possible by a llnear transformation of the
varlables ¢, and y . In accordance with this, we shall say that the sys-
tem 1s subjJect to the control of the first coordinate.

We shall deslgnate by lower case latin letters column vectors., The sym-
*
bol will designate transformation.

We shall conslder the problem of the analytical designing of the control
system [4].

Problenm 1.1 . Find a function
' p ’ “
u = l*q = llqll + lg({g _}_ e . _*" lnqn/ (1.3)
depending only upon the velccitles, and such that the solution* ¢,= 0 1s

asymptotically stable [9], on the basis of equatlons (1.2) and (1.3), end

such that the minimum of the functional
[ve] oo

: an
J= & o (z, u) dt = R (2 Cij2i%; —]~du2) dt = min (1.4)
0 0 =1
1s obtained for variatlons of ¢, (t), u(¢).
Here d> 0, Zc,-jzizj is a positive semi-definite form Zgi-1 = qi,' and
22t = ¢;. We shall transform the system (1.2) into normal coordinates [ 1]

B= Ay e (=t ) (-9

Here ), and e, are determined from Equatlons

|B——-7\.E|:0, e; = Sqi

n

2 (O — Ophi) sy = 0 (L 7=1,.., 0, 8;;=0, 8;=0, iz~ /)
k=1

whereupon the vectors Si = {Ski} (k=1,...,n) are the orthogonal elgen-
vectors of the matrix B = |», | .

We replace Equations (1.5) by the system

T'gic1 = MaicaZai + 81, 211l Ty = Tgiy (i=1,...,n) (1.6)
In coordinates x, the functional (1.4) becomes
X e
J: \ < Z dijxi:c,- —f— du2) dt (17)
0 =1
The desired stabillzing signhal
U = P+ PsTs + . . . Ponog Tony (1.8)
and the optimum Liapunov function
an
V= 2 Aijx,-xj (19)

ij=1
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which determines that signal, satisfy the equations of Liapunov-Bellman [4
and 10]

an n
. av av
dixix, + du?® + Aag—1Zax + Spop-1U) =—— - Zopg =0
i;‘z=1 17Li%) k§1( %12k 12k-1 )axzk_l kgl 9z, ak-1 (1.10)
. v
2du + Eslﬂk—l ‘ax—ﬂ:l =0

k=1
Substituting (1.8) and (1.9) into (1.10) and equating to zero the coeffi-

cjents of ldentical x.x, , we get for the values of p,,_, and 4,, the
equations

D A giaSnaa =0 (k=1,.., n) (1.11)

i=1

2 Ager s Suzia+ WP =0 (k=1,.., n) (1.12)

i=1

dak—'l.zp—l + dPM_l pzp—1 + Pajey Z Asi, 2p-151, 2-1 T
i=1
+ P,MZ Agi1, 151,30+ Agrap + Aapr,k =0 (k, p=1,..,, n) (1.13)
i=1
dap,2k-1 -+ hap-1 Agk-1, 2p-1 + Age,ap == 0 (k, p=1,..., n) (1.14)

dapak + Aop_1 Ask,sp-1 + Agk1 Aop,ak-1 =10 (k, p=1,..., n) (1.15)

We shall consider a class of such problems for which the optimum function

v (1.9) can be constructed as the sum of two components, one of which depends
only on the coordinates and the other on the veloclties only. Then 44,4, = O.

We get the equation ¥(x°) = J°{x°) , where J°(x°) 4is the minimal value
of the functional (1.7) considered as a function of the initidl conditions
of the system x(0) = x°. Consequently, we shall consider the class of prob-
lems 1.1, for which the minimum value of the functional J° in the function
of the initial state of the system, can be broken down into two components,
one of which depends only on the initial coordinetes go=q (0) and the other
one, only on the initial velocitles g/, = ¢ (© o

We shall assume that in the linear approximation (S and 11] the system (1.1)
can be completely controlled by the signal u, and consequently, the féllowing
conditions are fulfilled:

Moicy 5= Rojrs S1, 210 G, i=1.,n i) (1.16)

With the assumptions made, there follows {rom Equations (1.11) to (1.15)
that the following relations must be fulfilled:

i > 2 —— dak—l, 2%k-1
S dyrias + dur = 24 (X py  Tawr) Pyey = = AR 5 (1.17)
ij=1 k=1
T — b p=1r n
Aek.zk = }"zk—l Azk-l, 2k-11 :Azk-l, 2k-1 = i’. _—si:k_l_fi‘l ( pk#p )
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Agk, op = Agky, 9p1 =0 ke, p=1,.., n; k=£p) (1.18)

(the sign in front of the radical in (1.18) 1s chosen in such a way that
Aze-1,2x=1> O) «

We shall discuss the sufficient conditions of solvability of the problem
1.1 with our assumptlons. The function ¥ determined by (1.9) must be posi-
tive definite, 1.e. the inequality

Mgy <O (k =1,..., ny (1.19)
must be satisfied,

This means that the original system (1.2) must be stable in the absence
of control, The fulfillment of conditions (1.19) is sufficient for ths func-
tions V to be positive definite,

A positlve definite function ¥ , having a negative semi-definite deriva~

tive 4V /dt = —w (2, u) will guarantee [12] an assimptotic stability of the
motion x,= 0 , if, on the surface
n
dv 2
=2 ( Z Poj-y xM‘—l)
k=1

there are no complete semi-trajectorles of the system (1.6),(1.8), except
for the equllibrium position gz.= 0. & sufficient condition is obtained if
the linear forms g

n

d

E;E(E Pzi—ﬂ:zi—l) (k=0,1,..,. y2n — 1)
i=1

formed on the basls of (1.6),(1.8),are linearly independent. Sufficlent
conditions for asymptotlic stabllity of the system (1.6),{1.8) can be deduced,
as was done in [2]. However, the conditions of Theorem [12] can alsoc be
quickly considered from another point of view, by relating this theorem with
the property of predictability of the system considered.

On the basis of the system of equations
dr [dt = Az 4- bu (u=p'z, 2= {21, .. Ty} 1.20)

let some Liapunov function {the quadratic form y(x))} have the negative
seml~definlte derilvative

v/ dt = —p () — du? (1.21)

where ufx) is a positive semi~-definite form of the variable x,. The ensem~
ble of polnts x , for which u{x) = O represents a linear subspace of space
{x,}.. We shall denote this subspace by the symbol ¥ . Together with sys~-
tem {1.20) let’us consider the homogenous system

dz [ dt = Aw (1.22)
for which we shall examine the problem of prediction of the value

(7)) = r*z (T)
from the value 5 () = u () = p*=» () for 0<t<T, t.e. the problem of the
operation [13, 6 and 3] -

nm={tmema (1.23)
]
The following statement 1s true.
Lemma 1.1 . Let 1t be posslble to choose a positive definite func-
tion ¥(x) having a negative semi-definite derivative (1.21) according to
Equation (1.20). If, for the system (1.22), the problem (1.23) of prediection
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of the quantity W(7) = r*x(T) from the quantity E(f) = u(f) = p*z(f) 1s
possible for all vectors r of the subspace ¥ , then the solution x = O
is asymptotically stable on the basis of Equation (1.20).

In fact, we shall consider a solution x{¢) , different from = (t) =0 ang
such that 4y /dt = 0. According to (1.21), this is possible only if condi-
tions u [z ()] =0 and p [z (1)] =0, are fulfilled, i.e. in any case, only if
thf solution x(t) 1lles in the subspace ¥ for all ¢>0. As long as
r (1) 0, we have, at some moment, t =7 , x(T) =7 # 0 and r €& N. Thus
r*x{T) = >0 ., From the condition of the Lemma, the value n(Z7) 1s pre-

dictable from the value u (t) (0 <t <CT). According to [6], this predictabi-

11ty is possible only 1f y (1) =0 when n{T) # O . The contradiction we

have obtained (u (?) =0 and ulo *0) shows that there are no solution x(Z),
different from g (1) = 0, for which we could get dV/dt =0. According to

[12], the solution x = O of the system (1.20) is asymptotically stable,
which proves the Lemma.

Note 1.1 . The value 7 = »*¢(T) 1s predictable from the value

€ = p*_x(t) i1f the vector r* 1lies in the subspace W generated by the vec-

.

tors p*,p'A,..., p‘,l"“l . Consequently a sufficient condition of asymptotic
stability ot the system (1.20) which has & positive definite function V{x)
having & negative seml-definite derivative (1.21), is obtained if the linear
subspace ¥ , where u(x) = O 1s contalned in the subspace W .

The asymptotic stability will be guaranteed if the system (1.6) foru = ()
is completely predictable from the quantity ng;‘_l, Tgr_y. A sufficlent con-
dition is obtained if conditions (1.16) and (1.19) are satisfied and

Pgy O (k=1,..., n) (1.24)
Thus, the following statement 1s true.

Theorem 1.1.1. Let conditions (1.16) and (1.19) be satisfled and
let the expression Ids xyx, in the minimlized functional {1.7) have the form

n n

2

2 dijziz; == (E Taks xzk—l) = (f*2)? (1.25)
1j=1 k=1

whereupon &1l £, _,# O . Then problem 1.1 has the solution u = p*xr (1.8),

which stabilizes the system (1.6) in an optimum manner, Thus Doy y = @ 2faky

and, after the substitution wu(t) = p*x(z), the subintegral function w in

the minimized functional becomes w = 22(p*x)® .

Theorenmn 1.1.2. Taking into consideration only the problems where
the minimal value of the functional J°= min g , (considered as a function
of the initial condition of the system ¢,,, q',o), appears as the sum of two
components, one of which depends on coordinates g¢;, only, and the other on
the velocities g¢’,, only, the problem of the stabllization can be solved
only 1f conditions (1.16), (1.19) and (1.25) are fulfilled. Therefore these
conditions are also necessary conditions of solvability of the problem.

2. We shall consider the relation between the results we have just
obtained and the problem of stabilization of a system with dissipative for«
ces [2].

Thus, let us assume the system (1.5) 1s stable for u =0 , 1.e» 1, < O

(¢t = 1,...,n). Then, according to [3], the equilibrium position 1(‘= 0 can
be made asymptotically stable by means of the choice of a force u vy') of
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an arbitrary kind, if, and only if the conditions of controllability (1.16)
are fulfilled. The force u(y,y’) can be determined with these conditions
from the solution of the problem of the analytical designing of an optimum
control system [4] by minimlzing the value (1.4). We shall choose the value
J , in accordance, with the results of Section 1, in the form

o0 [o] n

J = S o (r, u) dt= S [( Z :sl,2i—1x2i—1\)2 —}—uz] dt @21

0 0 i—1

The optimum Liapunov function ¥(x) and the optimum command y°(x), satis-
fying the equation of Liapunov-Bellman

N d" ' — B
min,, (W +w (z, u)) =0 (2.2)
as follows from Section 1, have the form
n n
_ 2 2 ° _ Al
V)= 2 (731 Maicg%ai)s w (1) = — Z 81,2i-1%2i-1 (2.3)
i:1 i=}
whereupon, on the basis of Equation (1.6), we have for y = u°
n
v _ 2
=2 (Z ‘?mi—l”ai—l) (2.4)
i==1

When conditions (1.16) and (1.19) are fulfilled, the system (1.6) (2.4)
satisfies the conditions of Lemma 1.1, i.e. in fact, the Liapunov function
v(x) (2.3),(2.4) guarantees an asymptotic stability of equilibrium x,= O.
However the values S ., ¥ in Equations (1.5) can be considered as general-
ized dissipative forces x,, generated by the function of Rayleigh [14].

n
AN 2 2.5
2R = (ZJ 31.25-1x2i—1) (2.5)
i=1
In such a case, the optimum Liapunov function V(x) is equal to twice the

energy of the system n

n
. '1 1 2 1 -
o= 2—< 1 Taieg T Z Azi—1x2i2)
i=1 i=1
In coordinates g,, g/, described by Equations (1.2), we have

2R = (¢,")% Q, = u® = —q’

Consequently, if we assume that the system (1.1) 1s controlled in the
linear approximation by a signal on the coordinate g4, , we shall deduce that
when conditions (1.16) and (1.19) are fulfilled, the stabilization of the
system (1.2) 1s possible by a dissipative force u°= — aR/dq,, generated by
a partial dissipation ﬁ(q on the coordinate 1. (The conditions of con-
trollability (1.16) mean, in particular, that the generalized force ¢ does
not coincide in direction with any canonical axis x,).

Thus, the following statement 1is true.

Theorem 2.1 . The stable system (1.2), subject to the command vy
on its first coordinate ¢, can be stabilized to asymptotic stability by a
force of an arbitrary kind u (q,q') if, and only if the stabilization of
the system 1s possible by a dissipative force u (¢,’] = — OR /dq,’. There-
fore, the conditions of stabilization by a dissipative force [2] colncide
with the general conditions of full controllabllity and abillity to be stabi-
lized of the system [3]. Thus, a dissipative force u(g,’) can be considered
as the solution of the problem of the analytical designing of an optimum
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control system y , which minimizes the quantity

J= % [q,2 + u? (§)] dt =g [2R (g,) + u? ()] dt (2.6)

The minimum value J° of quantity J of (2.6) is therefore equal to twice
the quantity of energy dissipated during the decaying motion of the optimum
system o0

7=\ 4R g () at
(4]

The problem 1.1, as studied in the case of the first approximation (1.2)
can be extended, on the basis of the general results [15 to 17],to the ana-
logous problem of the completely nonlinear system (where nonlinear elements
include the small terms of highest order with respect to ¢ ). We shall not
consider here the details of this extension,

We shall notice only that & conservative stationary system has an integral
of energy, but for the motion of the controlled system

d or _or _ o1 dor or _ou :
di gy " g 9g, T W diag "ag; ~og (THe-am @7

the derivative of the complete energy of system K , with inclusion of its
nonlinear elements, satisfies condition

dH/dt=¢q' 4 or dH/dt=—2R for u= —0R/dq’', 2R=¢"
Therefore, the statement of Theorem (2.1) 1s still valid in the nonlinear
case.
Consequently, the solution of the problem of analytical designing of an
optimum control system .
S 2R (¢) + w* ()] dt = min (2R = ¢,

0
is also determined in the nonlinear case by the optimum Liapunov function

Vg ¢') =2H (g, ¢)

equal to twice the complete energy, whereupon w = — OR | 8¢y’".

3., We shall consider the influence of dissipative forces on the control-
1lability and predictability of conservative mechanical systems in the neigh-
borhood of the equilibrium position. We shall assume that system (1.6) 1s
not controllable completely by the controcl uy . This means that the condi-
tions (1.16) are not fulfilled, i.e. some of the 1\, are equal, or some of
the numbers 8,;, are equal to zero.

We shall consider the particular case 1in which A, = ... = A, =X ¥ O,
Therefore we shall consider the system

T’y = Moy + o, Ty = Zyiq - (i=1,.,n) (3.1)
where at least one of the numbers q,# O . We shall examine the existence
of such dissipative forces when the system (3.1) becomes completely control

lable by the control yu .' In order to find a solution to this problem, it
is sufficient to show that we can find a positive semi~definite function
n

2R = — 2 TijT2i-1%2j-1 (3.2)

ij=1
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such that the system
oR

xlzi_.l = }\oxgi — -

oTan Fa= g (=t (33

becomes controllable completely by the control y . In the present case, we
can determine some dissipative forces making the system (3.1) completely con~

trollable in the following manner. The system (3.1) can always be transformed
into the form

2'giy = hzy + B, 2o = Zgig Bi=0, i=1,., 1) (3.4)

Let us choose a function R of the form

2R = Z N
i=1

The system (3.4) becomes
21 = My — BZaia T B, 74 = Zaig (i=1,.,n (3.5)

It can be verified that the system {(3.5) is controllable completely if
e # Hy » l.e. 1t 1s always possible, in this case, to find some dissipative
forces which make the system completely controllable.

4, Example . Let us consider a simpie illustrative example. Let
a material point move on the surface z = p(x,y) . The coordinates (x,y,z)
are orthogonal, the z-axis directed vertically upwards and. x and y along
the principal directions of the surface at the point ¢ , whlch, we assume,
is the extremum point of the function g = y{x,y) . We shall suppose that
the deviation of the material point from the position of equilibrium (0,0,0)
and its velocity are small, We shall assume that the meterlal polnt is sub-
Ject to the force of gravity and the control gy , which has 2 constant hori-
zontal direction., The equations of motion of the point are in the first order

approximation
z" = }\41‘1 ‘f“ au, y" = ;ugy + 1 7173 (41)

a) If M=k, 150,85 0, the system (4.1) can be completely control-
led and stabilized by the control u , if the point o of the surface
z = 7{x,y) is not a spberical point, and 1f the control is not directed along
the principal directions of the surface at this point;

b) Ir M =M =250, 3¢, 1f the point ¢ 1s a spherical point, the
system (4.1} is not controllable completely, and cannot be stabllized for
x> 0 . From Section 3, there follows that, if in such case an irregular
friction 18 applied, the system becomes completely controllable and can be
stabilized by the control y if the direction does ngt ¢oinecide with the
principal axes of the ellipse of friction, Here, by "ellipse of friction"
we mean the curve A = ¢°, where R{x’,y’) 1s the dissipation function.

Let us see how lmportant gyroscoplc forces are in problems of contrel,
prediction and stabilization. It is known [1], that a conservative unstable
system can be stabilized in many cases (but not asymptotically) by the super-
posltion of adequate gyroscoplc forces, This stabllity 1s destroyed when
dissipative forces are applied [1]. It turns out that gyroscoplc forces play,
with respect to the controlled system, & role which is ss important, In other
words, in many cases, an adequate cholce of gyroscoplc forces will improve
the qualitlies of controllability, predictabllity and ability to be stabllized,
of a conservative mechanical system 1n the neighborhood of 1ts position of
equilibrium,

K, We shall consider the particular case in which we have in (1.6) A=
= ... =1,= L , and at least one of the numbers g,,# O . The system (1.6}
can then be written in the form
) =Arg+tu, 2 =2, ey =Aw Tu= Tug (=2,...,n) 5.1)
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The system (5.1) is not completely controllable by the control y , how-
ever 1t is possible to find gyroscopic forces which would make the system
controllable completely,

In fact it can be verified easily that the system
z, = Azy + 073 + U, z, = 2, (5.2)
2'gip = ATy + ©iTpis — Oy Taig, T'g = Zpiyg (i=2,..,n 0,=0)
1s controllable completely by the control y 1f
A= 0, w50 (i=1,.., n—1)

We shall consider an example in which not all X are equal, Let us have
a pendulum with two degrees of freedom moving in the neighborhood of its
upper unstable point of equilibrium, and subject to the horizontal control
force lying in the horlzontal plane {z,y} , whereupon we shall suppose that
the equations of the first approximation are

z" = hz, v =hy+u (6.3

where x and are the coordinates of the mass center m rigidly fixed
on the shaft whYch does not rotate around its longitudinal axis.

This system is not completely controlled by the control u along vV >
and consequently the position x = y = O cannot be stabilized by any cholce
of u (x,x', y, ¥') . Similarly, this system is not completely predictable
from the coordinate y. We shall assume, therefore, that the mass -m is
concentrated in a flywheel rotating around the longitudinal axis of the shaft
with an angular velocity o . Then, complementary terms determined by the
gyroscopic effect appear in Equation (5.1). Let, in such case, the equations
of motion of the first approximation take the form

7' = 7, zd = hx) + 04, zyd = x4, zd = Mzs — 0xy + u (5.4)

It is easy to check that for A, #0 , w # O, the system (5.4) is com-
pletely controllable by the force u , and consequently, the resulting
mechanical system can now be asymptotically stabilized by the force
u (x, x', ¥, y¥') . Similarly, the system %5.4) will be predictable {for
instance from the quantity x,{¢)) .

Thus, 1t can be seen from what has been said previously, that the system
which could be neither controlled nor stabilized by a given force, could be
controlled and stabllized by the same force when adequate gyroscopic forces
are applied.

We shall note, furthermore, an interesting characteristic which distin-
gulshes the property that a conservative system initially stable can be sta-
bilized by a control y , and that a noncontrollable conservative system
initially unstable can be controlled and stubilized in presence of gyroscopic
forces. This property 1s closely related to an analogous property which con-
cerns the case of noncontrollable systems. It is shown in Sections 1 and 2
that a conservative system which 1s stable (but not asymptotically) can be
stablllized by a force chosen in a class of forces of an arbitrary kind, if
and only 1f, 1t is limited to a class of dissipative forces. On the con-
trary, if, by superposition of gyroscopic forces, we stabilize (but not
asymptotically) and make controllable by a control u a system which was
initially unstable and not completely controllable b ¥ , this means that
we can stabilize 1t only by choosing a force u (g,g’) of a sufficlently
general kind which cannot be limited to a class o% dissipative forces. Those
dissipative forces would even destroy the nonasymptotic stabllity already
obtalned by means of gyroscopic forces.

6. In conclusion, we shall examine, in the case of a conservative mechan-
ical system (1.2), how the"maximumrminimum" conditlon 1s transformed [6 and 7]
which determines the control u , which in turn brings the system to the
given state g¢,= O, ¢/= O using the smallest possible intensity p’(u) .
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We shall consider the problem only in the lilnear approximation., Further-
more, 1n order to simplify the calculatlions we shall not consider the problem
of bringing the system from the given point @105 1o b0 the equilibrium
position g¢,= 0, 4,= O, but on the contrary t%e problem of bringing the
system from the polnt g¢,= 0, g¢,’= 0 to the point g¢,., ¢g,,/. IT 1is obvious
that we can get the solution of one problem from the soiution of the other
by changing the time ¢ into —t .

We shall consider the system described by Equations

n n

ql” — 2 bnq] + u, qi” == 2 b”qJ (i = 2,_._’ n) (6.1)
j=1 i=1

The problem 1s the following.

Problem 6.1. Given the interval of time 0 ¢ <{ T the initial
(a) and final (w) states of the system

3,0 =¢,=0 ¢ (=g, =0, T =g, ¢ T =4,

find the control U (f) (0<<t<T) which brings the system (6.1) from the
state o to the state o and has the smallest possible intensitv p*(y) .

The form of the function p*(y), which yields an estimate of the intensity
of the force uy which i1s used, 1is supposed given. It 1s also assumed that
the function o*(u) corresponds to the calculation of the norm of the linear
operation

n
e={twupa (6.2)
0

considered on any functional space {§ (1), 0<Ct<{ T}, on which the norm (&)
is given. Then

T
p* fu) = sup S E (t) u(T)dT for p(§)=1]
0

We shall assume that the system (6.1) is completely controllable, and
consequently that the problem 6.1 can be solved for any end conditions q
and w .

In agreement with [6 and 71, in order to solve the problem 6.1, we must
¢onsider the motion yfj%?«)si;fsi?T of the system which corresponds to
(6.1) and has the smallést possible Intensity

min, p (4*y°) = a (6.3)
for the end conditlon (g*(7) y (T) = 1) . The sought optimum command u°(t),

which solves prcblem 6.1 isodetermined from the condltion of maximality of
operation (6.2) on g*= p*y°, 1.e. from condition

T T ‘
S £ (¥) u® (1) dv = max, [S E° (9 u (v) dv | (6.4)
0 0

with condition p*(u) = 1/a . Condition (6.4) is the condition of the maxi-
mum principle [1%] and condition (6.3) 1s the condition of the minimum [7]
which, according to the conditions of the maximum principle, ylields the vec-
tor ¢ = y which guarantees that the system willl come exactly to the given
state ¢(T) = d4,. (Here » 1s a 2n column vector b = {0, 1, ..., 0}, ¢
1s a 2n vector {g,, g\s «++s @us g} ) -

Let us change to normal coordinates x, in Equations (6,1). We shall
label them differently than in (1.6). In this sectlon especlally we shall
consider that the veloclty has a greater index than the corresponding coor-
dinate.

Consequently, uhe symbols x,,., W1ll designate the coordinates and the
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symbols x,, the velocities, Then system (6.1) becomes

Toh) = Top s Ty’ = My o+ Pyu (k=1,...,n) (6.5)

The end conditions of the problem become z (0) = z'* =0, =z (T) = 2
where the 2n dimensional vector 2(« 1s related to the 2n dimensional vector
¢'“! by a linear transformation.

The system of equations corresponding to the system (6.5) (for u = 0)
becomes .
Yokor = — MYarr Yo = — Y2k-1 (k=1,...,n) (6.6)
After relabelling the variables ¥ak — Z2k-1» Y2k-1 ~ 22% and after reversing
the direction of measurement of time, 1.e. after replacing ¢t =T — T, we get
from (6.6) Equations

Zopy = Zgpr 2 = Mgy k=1,...n) 6.7)

which coincide with the principal part of system (6.5). We shall denote by

z(w) the vector obtained from vector ,(®) for the labelling of coordinates
which relates the vectors g and 2z ; we denote by the symbol ] the vec-
tor 1 = {pa, O, ..., Pa,» O} which is deduced from vector p = (0, P,, ...

.+, 0, P;,} by an analogous relabelling of coordinates.

We shall find the motion z(t) of system (6,7) satisfying to end condition
([.z“")]. z (0)) = 1 and such that the signal E(@=z(@) (0<t<T) has the
smallest possible intensity p(€) = min . ‘hen the sought signal y(r) ,
determining the optimum command ét) according to the conditions of the
"maximum~minimum"” rule (6.3) and (6.4) 1s related to the vector z(¢) by the
relations

y;k (1) = 24, (T — ), Yoi-y (V) = 294 (T — 1)
Thus, we come to the following conclusion.

Theorem 6,1 . The optimum control u°(t) solving the problem
(6.1) of the control of mechanical conservative system, 1s determined by the
"maximum - minimum" rule conditions (6.3) and (6.4) where the vector y(«)
describes the motion of the same system (for y = 0) in which the coordinates
are replaced by the velocities, the velocities by the coordinates and for
which the time is reversed (r =T —t) .
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